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Abstract

Recently, large language models (LLMs) have been explored for integration with
collaborative filtering (CF)-based recommendation systems, which are crucial for
personalizing user experiences. However, a key challenge is that LLMs struggle to
interpret the latent, non-semantic embeddings produced by CF approaches, limiting
recommendation effectiveness and further applications. To address this, we propose
FACE, a general interpretable framework that maps CF embeddings into pre-trained
LLM tokens. Specifically, we introduce a disentangled projection module to de-
compose CF embeddings into concept-specific vectors, followed by a quantized
autoencoder to convert continuous embeddings into LLM tokens (descriptors).
Then, we design a contrastive alignment objective to ensure that the tokens align
with corresponding textual signals. Hence, the model-agnostic FACE framework
achieves semantic alignment without fine-tuning LLMs and enhances recommenda-
tion performance by leveraging their pre-trained capabilities. Empirical results on
three real-world recommendation datasets demonstrate performance improvements
in benchmark models, with interpretability studies confirming the interpretability
of the descriptors. Code is available in https://github.com/YixinRoll/FACE.

1 Introduction

Recommender systems are crucial in modern digital platforms, achieving personalized adaptation
and driving user engagement across e-commerce, streaming services, and intelligent education [44,
39]. Collaborative filtering (CF) [8] methods, particularly those based on graph neural networks
(GNNs), excel at capturing latent user-item relationships through embeddings in recommendation [38].
Recently, large language models (LLMs) have shown impressive reasoning capabilities in a wide
range of tasks [21, 25, 24, 33, 45], prompting efforts to integrate them with recommendation systems.
While some studies have explored enhancing recommendation quality with LLMs, a key challenge
remains: LLMs, designed for processing natural language, are not inherently equipped to interpret the
latent, non-semantic embeddings produced by CF methods. Bridging this gap, which allows LLMs to
directly understand and utilize latent representations from CF models, remains an unresolved and
pressing issue.
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Existing approaches to integrating LLMs with recommender systems can be categorized into two
types. The first directly feeds user/item textual information (e.g., title) into LLMs as static inputs [7,
19, 1]. As a representative example, TALLRec [2] performs recommendations using item titles and
incorporates fine-tuning for recommendation tasks. However, without collaborative information,
these methods often fall short of surpassing conventional recommenders. The second approach
aligns the latent embedding space of CF with LLMs for understanding [53, 11, 48]. This is usually
achieved through a unidirectional aligning network (e.g., MLP or Q-former [16]). For instance,
ELM [31] equips LLMs with adapter layers for transforming abstract vectors into token embedding
space; RLMRec [26] uses the contrastive or generative alignment of CF embeddings to inject textual
knowledge into recommendation. While this spatial alignment helps, LLMs are pre-trained on
natural textual language, and the mapped embeddings diverge from LLMs’ original token space [51].
Consequently, the implicit alignment does not enable frozen LLMs to directly interpret the intrinsic
meaning of CF embeddings. This limitation hampers LLMs’ capacity to develop a deep understanding
of user preferences and to support complex downstream recommendation tasks.

To enable universal compatibility between arbitrary CF models and LLMs, several technical chal-
lenges must be addressed: 1. Decoupling Entangled Representations: CF embeddings often combine
multiple types of user preferences (or item features) into a single entangled vector [54], making it dif-
ficult to separate and interpret a user’s preferences across different aspects. 2. Continuous-to-Discrete
Mapping: Translating continuous embeddings into LLM-readable tokens without fine-tuning requires
resolving the mismatch between continuous CF representations and discrete, high-dimensional pre-
trained LLM token embeddings. 3. Semantic Consistency: Mapped tokens must retain the users’
semantic intent while aligning with LLMs’ linguistic priors, ensuring that these representations can
be effectively mapped to LLM token embeddings without distorting the information.

To address the above challenges, we propose FACE (a general Framework for mApping Collaborative
filtering Embeddings into LLM tokens). Specifically, we first introduce a disentangled projection
module that decomposes entangled CF embeddings into concept-specific vectors. We then design a
quantized variational autoencoder [35] that learns a codebook to quantize continuous embeddings into
discrete pretrained LLM textual tokens (named descriptors). Furthermore, we propose a contrastive
alignment learning strategy that ensures the mapped tokens align with their corresponding textual
signals. By achieving better semantic alignment, FACE not only establishes an accurate representation-
semantic mapping between general CF models and LLMs without fine-tuning LLMs but also leverages
the powerful capabilities of LLMs to enhance the performance of the original recommendation model
and interpret its embedding. Finally, extensive experiments on three open-access datasets demonstrate
that FACE improves the performance of conventional CF models, while interpretability studies
validate that the decoded tokens align with textual signals and provide embedded interpretations for
user-item interactions [12]. Our main contributions can be summarized as follows:

• To the best of our knowledge, this is the first work to propose a model-agnostic framework for
directly mapping CF user/item embeddings into pre-trained LLM textual tokens, allowing LLMs to
better understand user preferences and support more complex recommendation tasks.

• We introduce FACE, a general and interpretable representation alignment framework that leverages
vector quantization and contrastive learning to efficiently and accurately convert entangled CF
embeddings into pre-trained textual tokens.

• Extensive empirical results on three real-world datasets show that FACE enhances recommendation
performance across various benchmark approaches, while interpretability studies demonstrate its
great interpretability.

2 Related Work

Collaborative Filtering. Collaborative filtering (CF) is a technique used in recommendation sys-
tems that makes predictions based on preferences or similarities. Matrix factorization (MF) [14, 37]
is the prototype of collaborative filtering based on representation learning, where the embedding
matrix of entities (users & items) is learned directly. Inspired by the success of graph neural net-
works (GNNs) in modeling graph-structured data [13], many studies have explored graph-based
representation learning by modeling the user-item bipartite graph structure. Simplified graph collab-
orative filtering models that eschew complex deep learning operations, such as LR-GCCF [3] and
LightGCN [9], have demonstrated superior performance in experiments. Subsequently, numerous
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studies have focused on optimizing graph collaborative filtering models. For instance, some have
utilized self-supervised learning methods to enhance the robustness of representations [43, 50, 20],
while others have addressed issues like over-smoothing [5] and over-correlation [46]. Despite these
encouraging advances, pure collaborative filtering methods consistently struggle with data sparsity
and explainability in practical applications.

LLM-based Recommendations. Advances in LLMs have sparked significant research interests
in enhancing recommender systems. Much prior work is devoted to utilizing or training LLMs to
function as effective recommenders. A straightforward approach is to list the historical interaction
item sequence and design prompts to guide LLMs to make recommendations [6, 7], and TALLRec [2]
further incorporates tuning into LLMs for the recommendation task adaptation to bridge the gap
between recommendation tasks and natural language tasks. Recently, research has shown that
LLMs can comprehend recommendation embeddings via lightweight adapters [49, 31], and can
be aligned with domain-specific latent embedding spaces [32]. Building on this, some works
integrate collaborative information to improve LLM’s performance in recommendations. For instance,
CoLLM [53]/P4LM [11] combines mapped collaborative information with item titles into LLM
recommendations for better performance/explanation; ILM [48] adopts the Q-former architecture to
encode item CF embeddings for conversational recommendation. However, the mapped embeddings
diverge from the LLM’s original token space, which hinders the full utilization of the LLM’s
capabilities. To address this challenge, BinLLM [52] encodes collaborative information textually
into an IP-address-like string. However, relying solely on numerical tokens limits the LLM’s
comprehension and still necessitates fine-tuning for LLMs to understand the collaborative information.
Moreover, owing to the limited context window and high computational costs of LLMs, these LLM-
based methods can hardly be applied to a full-ranking setting in real-world recommendation scenarios,
thus suffering from scalability issues.

Another stream of work concentrates on enhancing existing collaborative filtering methods with
the assistance of LLMs. Extracting and injecting the world knowledge and context comprehension
abilities of LLMs into conventional recommender systems could enhance item and user modeling [30].
LLMRec [42] augments semantic and collaborative data with the power of LLMs, and RLMRec [26]
aligns the final representation of users and items obtained from the backbone of a conventional
recommender (e.g., LightGCN) with the profile generated from a text embedding model. However, the
LLM’s capabilities are not being fully utilized due to the large gap between text and recommendation.
Differently, we encode the CF embeddings into the token space of the LLMs. By doing so, a
pre-trained LLM can directly understand and interpret CF embeddings through its inherent literal
knowledge, without requiring additional fine-tuning.

3 Methodology

3.1 Framework Overview

The FACE framework transforms CF embeddings into textual tokens (descriptors) compatible with
LLMs. As illustrated in Figure 1, the framework consists of two main steps. In the first step,
vector-quantized disentangled representation mapping (Section 3.2), we employ an AutoEncoder
architecture with a quantized codebook of token embeddings following dimensionality reduction. The
encoder, composed of a multi-projector and transformer, disentangles the original CF embeddings
and learns complex relationships. In the second step, contrastive learning for semantic representation
alignment (Section 3.3), we utilize an LLM embedding model to encode user/item summaries and
descriptor-generated sentences, which are then aligned through a contrastive learning objective.

3.2 Vector-quantized Disentangled Representation Mapping

To enable effective mapping of CF embeddings with pre-trained LLM tokens, inspired by VQ-
VAE [35], we propose to apply a frozen LLM vocabulary as the codebook, with the encoder-decoder
structure to learn the mapping relationships.
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Figure 1: The overall architecture of our FACE framework. (a) Mapping stage. We employ a
framework similar to the RQ-VAE architecture for the final embedding of a CF model with a frozen
LLM codebook, encoding the CF embedding into pre-trained LLM tokens. (b) Alignment stage. We
leverage contrastive learning to achieve the semantic alignment of descriptors and summaries.

3.2.1 Codebook for Quantization

This part focuses on constructing a codebook with LLM’s vocabulary for quantization. First, we
conduct filtering on the vocabulary of the LLM. Specifically, with the assistance of the Corpus of
Contemporary American English (COCA) [4], we select words (no subwords) that carry meaningful
semantic information for interpretation. Then, we obtain a subset D ⊆ DLLM of the LLM vocabulary,
where DLLM represents the full vocabulary of the language model. We freeze the embedding of these
tokens as the codebook in our quantized autoencoder structure, formulated as:

C0 = ELLM(D), (1)

where ELLM denotes the pretrained token embedding component of the LLM, and the embedding
matrix C0 ∈ R|D|×dLLM . These token embeddings encode rich semantic information, enabling further
mathematical operations in the vector space to quantify semantic associations. To reduce redundancy
in high-dimensional LLM token embeddings after filtering, we apply a trainable linear transformation:

C = WcC0, (2)

where Wc ∈ Rd×dLLM , and d (d < dLLM) is the dimension for quantization. This dimensionality
reduction not only enhances computational efficiency but also initiatively aligns LLM tokens with CF
embeddings. Crucially, we freeze the original codebook embeddings C0 while exclusively updating
the projection basis vectors through Wc. This design aligns with the SimVQ approach [55], where
theoretical analysis demonstrates that optimizing the latent space geometry rather than individually
selected code vectors mitigates representation collapse [29].

3.2.2 Representation Disentanglement and Quantization

To ensure the integrity of information as far as possible while mapping the CF representation to the
vocabulary space, we adopt the architecture of the autoencoder, which is designed to learn a latent
space that is capable of recovering the original data. The encoder is a disentangled projection module
consisting of two main parts.

First, the final representation e of the backbone CF model passes through a multi-projector, which
projects this vector into n different directions, capturing information from various perspectives:

ei = Wie for i = 1, 2, . . . , n, (3)
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where Wi denotes the weight matrix of the i-th projection head. The projection heads are initialized
orthogonally. These weight matrices project the origin embedding into n new spaces, aiming to
disentangle the complex preferences implied in the CF embedding into multiple aspects.

Secondly, the obtained n vectors are encoded using a transformer encoder module [36] to capture the
relationships between them and perform non-linear mapping:

(ze1 , ze2 , ..., zen) = Transformere(e1, e2, ..., en). (4)

Residual Quantization. For each ze, it is then quantized with the codebook C = (c1, c2, . . . c|D|)
constructed in Section 3.2.1 by recurrently selecting the nearest codeword to the current residual
measuring by Euclidean distance. For layer h, the residual quantization (RQ) [15] is expressed as:

r(h+1) = r(h) − c
(h)
k w.r.t. k = argmin

j
∥r(h) − cj∥22. (5)

where rh is the residual vector in the h-th RQ level, and initially r(1) = ze. After H levels of
residual quantization, the quantization embedding of ze can be obtained by zq =

∑H
i=1 c

(h). To
facilitate backpropagation through this non-differentiable operation, the Straight-Through Estimator
(STE) is applied between ze and zq . Compared with vanilla quantized autoencoder (e.g., VQ-VAE),
RQ quantizes residuals through multiple stages to achieve more precise discrete representations
and higher reconstruction quality. The hierarchical structure of residual quantization allows the
model to capture different levels of semantic information. Unlike conventional residual quantization
approaches, our implementation shares the same codebook across all quantization levels, with this
codebook being composed of pre-trained LLM token embeddings, maintaining semantic consistency
among the quantized tokens at different hierarchical levels. When obtaining zq by progressively
summing the quantized vectors from each layer, it can be implicitly interpreted as a composition of
meaningful semantic tokens. The descriptors can be obtained from the first-level quantization c(1),
as the nearest vector captures the main information of ze. For simplicity, we denote the descriptor
embedding as zdi

= c(1) in aspect i.

Similarly, the decoder consists of a transformer followed by a concat-projector to fuse the disentangled
quantized embedding to get the recovered CF embedding ere. The transformer in the decoder shares
the reverse architecture of that in the encoder. And it seems like a simplistic embedding model,
which generates the embedding for recommendations from several words. Furthermore, the decoder
can be used as a generator: given a few keywords, the well-trained decoder can generate a primary
embedding for users/items. The decoder can be expressed as:

(p1, p2, ..., pn) = Transformerd(zq1 , zq2 , ..., zqn), (6)

ere = W Concat(p1, p2, . . . , pn) + b. (7)

The loss function for mapping the embedding into descriptors appears similar to the RQ-VAE loss.
The reconstruction loss ensures that the framework can effectively reconstruct the input embedding e,
while the quantization loss constrains the encoder and the codebook, ensuring the encoder output ze is
close to the codebook vector zq and vice versa. It can be formulated as (sg[·] denotes stop gradient):

Lrecons = log p(e|zq) = ∥ere − e∥22, (8)

LQ =

H∑
h=1

(∥sg[r(h)]− c
(h)
k ∥22 + β∥sg[c(h)k ]− r(h)∥22), (9)

Lmap = Lrecons + LQ. (10)

3.3 Contrastive Learning for Semantic Representation Alignment

To achieve semantic alignment between CF representations and LLM-derived embeddings and ensure
the interpretability of mapped descriptors, we propose a contrastive representation alignment strategy,
the goal of which is to align the synthetic semantics of descriptors with the corresponding textual
information of users/items, ensuring the coherence of the mapped descriptors with the text.
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3.3.1 Semantic Embedding with LLM

Due to the excellent comprehensive capability of LLM, high-quality text embeddings can be obtained
from LLM, especially those adapted for embedding tasks [22], through token pooling. We will show
how to process text from summaries and descriptors and generate semantic embeddings from LLMs.

Summary Embedding: The summary embeddings are derived from textual information in the dataset,
and they serve as the anchor for alignment. Following the paradigm established in RLMRec [26], we
first generate a structured textual summary, denoted as s, for each user and item. This is achieved by
employing an LLM to enhance the original raw text. The process can be formulated as:

s = LLM(Ps ⊕Tori), (11)

where Ps is a predefined prompt and ⊕ denotes the concatenation operation.The original text, Tori,
is compiled from different sources: for items, it consists of the title, description, attributes, and any
available user reviews; for users, it is composed of the summaries of their historically interacted
items. Once the enhanced summary s is generated, it is encoded into a dense vector representation
hs using an LLM-based embedding model E :

hs = E(s). (12)

Descriptors Embedding: The embedding process of descriptors is designed to generate comprehen-
sive semantic representations for users and items from their extracted descriptors. The first step is to
format the descriptors into a sentence-like input. We prepend a prompt Pd to the descriptors, which
specifies the entity type (user or item) and indicates that the subsequent descriptors are keywords.
For example, in a book recommendation context, the prompt for a user could be: "The reader and his
preference can be described as:". However, directly generating embeddings from the textual form of
the descriptors is a non-differentiable operation, which prevents gradient flow during training. To
ensure end-to-end differentiability, we map the descriptors (zd1

, zd2
, . . . , zdn

) back to the original
high-dimensional word embedding space. This is accomplished by applying an inverse transforma-
tion via the pseudo-inverse matrix W−1

c = (WT
c Wc)

−1WT
c . These recovered embeddings are then

concatenated with the prompt’s token embeddings to form the final input sequence d as a description
of the user/item:

d = ELLM(Pd)⊕
(
W−1

c zd1
,W−1

c zd2
, . . . ,W−1

c zdn

)
. (13)

Finally, the complete sequence of embeddings d is passed directly to the LLM encoder E to produce
the final descriptors embedding hd:

hd = E(d). (14)

3.3.2 Contrastive Alignment Learning Strategy

To train the words and align the semantics, we adopt the contrastive alignment learning loss [23]
Lalign to learn the distinctive features of users and items, which can be represented as follows:

Lalign = − 1

|Ω|
∑
v∈Ω

log
ϕ(dv, sv)∑

v′∈Ω ϕ(dv, sv′)
, (15)

where Ω is the current batch of data containing users and items, and ϕ(d, s) is a function that computes
the matching score between descriptor-generated sentence d and summary s. In this paper, we adopt
the cosine similarity with temperature τ :

ϕ(d, s) = exp(
1

τ
cos(hd,hs)). (16)

This contrastive alignment learning strategy minimizes the distance between descriptors in dv and
their corresponding fixed summary sv , while pushing dv away from non-corresponding summaries sv′ .
By contrasting positive (dv, sv) pairs against negatives (dv, sv′), the descriptors adapt to emphasize
unique attributes of their paired user/item, rather than generic features. hs can be generated in advance
and fixed during training, and it serves as stable semantic anchors, ensuring learned descriptors capture
discriminative features for alignment.
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Table 1: Overall performance comparison on Amazon-book, Yelp, and Steam datasets.

Dataset Amazon-book Yelp Steam

R@5 R@20 N@5 N@20 R@5 R@20 N@5 N@20 R@5 R@20 N@5 N@20

GMF 0.0615 0.1531 0.0616 0.0922 0.0372 0.1052 0.0433 0.0660 0.0523 0.1343 0.0567 0.0844
+ FACE 0.0658 0.1553 0.0659 0.0955 0.0414 0.1120 0.0483 0.0717 0.0547 0.1411 0.0594 0.0888

LightGCN 0.0659 0.1563 0.0657 0.0961 0.0421 0.1141 0.0488 0.0726 0.0530 0.1361 0.0584 0.0862
+ FACE 0.0705 0.1622 0.0705 0.1009 0.0446 0.1203 0.0519 0.0766 0.0559 0.1439 0.0611 0.0912

SimGCL 0.0695 0.1617 0.0693 0.1001 0.0447 0.1209 0.0529 0.0775 0.0550 0.1420 0.0605 0.0899
+ FACE 0.0747 0.1670 0.0737 0.1047 0.0461 0.1225 0.0534 0.0781 0.0594 0.1487 0.0649 0.0951

LightGCL 0.0810 0.1712 0.0816 0.1114 0.0452 0.1228 0.0530 0.0780 0.0526 0.1234 0.0576 0.0815
+ FACE 0.0832 0.1759 0.0842 0.1148 0.0455 0.1253 0.0533 0.0793 0.0528 0.1238 0.0585 0.0818

RLMRec 0.0669 0.1572 0.0663 0.0981 0.0426 0.1165 0.0495 0.0737 0.0545 0.1408 0.0599 0.0887
+ FACE 0.0679 0.1581 0.0672 0.0985 0.0435 0.1196 0.0503 0.0755 0.0556 0.1432 0.0604 0.0901

3.4 Optimization

The above framework is employed on the final representation e of the basic collaborative filtering
model R, where prediction is performed on this representation. In other words, our proposed approach
is model-agnostic. Any model that can perform representation learning for users/items can be aligned
with LLMs through the framework. Assuming the optimization function of the recommender R is
denoted as LR, the overall optimization objective L can be formulated with coefficient µ and λ :

L = LR + µLmap + λLalign. (17)

Nevertheless, directly optimizing the joint objective L would lead to unstable training dynamics.
This is because simultaneously learning the recommendation backbone parameters from scratch and
the discrete LLM mapping function creates conflict. For the sake of training stability, we adopt
a 3-step training strategy. In step 1, pre-train the backbone recommender independently of our
framework; in step 2, employ the quantized autoencoder structure without alignment to primarily
map CF embeddings into LLM token embedding space; in step 3, add the semantic alignment to the
framework and jointly optimize with the whole objective minL. This curriculum paradigm ultimately
enables the alignment from the recommender to the LLM while enhancing its original capability and
interpretability.

4 Experiments

In this section, we conduct extensive experiments to evaluate the performance of FACE in comparison
to various state-of-the-art models across three real-world datasets. Specifically, we validate the
performance of the recommendation, the interpretability of mapped descriptors, the ablation studies,
and the sensitivity of the model.

4.1 Baselines

We evaluate the effectiveness of our framework by integrating it with five widely used state-of-the-art
recommendation models: GMF [14]: decomposes the interaction matrix into latent representation;
LightGCN [9]: a simplified graph convolutional network removes conventional neural components;
SimGCL [50]: a contrastive learning framework without explicit data augmentation, generating
multiple views via perturbations of the embedding; LightGCL [28]: leverages SVD to generate
self-augmented representations; RLMRec [26]: aligns existing CF models with LLM by maximizing
mutual information. Its contrastive variant based on LightGCN is used as the base model.

4.2 Experimental Settings

Evaluations: The evaluation protocols for recommendations employ two widely adopted ranking
metrics: Recall@N and normalized discounted cumulative gain (NDCG@N) [10] with N={5, 20},
calculated through an all-ranking evaluation strategy [40]. These metrics consider all non-interacted
items as potential candidates for each user during recommendation.

Datasets: We conduct experiments of the base model and our FACE framework on three public
datasets: Amazon-book, Yelp, and Steam. Please refer to Appendix A.1 for dataset details.
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Figure 3: Item-generation task.

Implementation Details: Our proposed framework is a model-agnostic plugin. Therefore, the
recommendation objective is that of the base model. In our experiments, the collaborative filtering
base models all adopted the BPR recommendation loss function as their objective. To ensure fair
comparisons, the latent embeddings for all baselines and FACE are set to 256. We determine the
main hyperparameters through a grid search. For FACE, we use the pre-trained embedding model
adapted from LLaMA2-7B[34] as the LLM. Additionally, all three datasets are divided into training,
validation, and test sets with a split of 3:1:1. FACE is trained using the Adam optimizer, with a
learning rate 1e-2 and batch size 128. We implement the model with SSLRec[27] and deploy it on
NVIDIA A100.

4.3 Performance Comparisons

To validate FACE’s effectiveness in enhancing the performance of recommender backbones, we
conduct a comparative analysis of several base models integrated with FACE against state-of-the-
art methods in collaborative filtering and the LLM-enhanced recommendation model. We run the
models three times and report the average results, which leads us to the following conclusions: (1)
FACE enhances the performance of various backbones, with maximum gains of 7.31%, 11.55%,
and 8.00% on the Amazon-book, Yelp, and Steam datasets, and nearly all sorts of CF models can
benefit from FACE’s integration. The empirical results highlight FACE framework can be used as
a general descriptor generator without the loss of performance and could even serve to enhance
the existing CF model from the text alignment. (2) Moreover, our framework can be applied to
RLMRec, a collaborative filtering model that already incorporates textual information, to achieve
further performance improvement, even if the improvement is minor compared to its application
on traditional recommendation models. These comparative results demonstrate that our proposed
framework, especially its descriptor-based alignment strategy with large language models, exhibits
superior effectiveness in enhancing CF performance.

4.4 Interpretability Studies

4.4.1 Item Recovery Based on Descriptors

Item-retrieval Task: To demonstrate that the implicit semantic information in descriptors can be
understood by LLMs. We first introduce an item-retrieval task, aiming to leverage the linguistic
capacity of LLM to retrieve the original item based solely on the FACE-generated descriptors. The
candidates are l items, each of which is represented by its basic information (e.g. title and summary).
We ask the LLM to select the most relevant item from the candidates based on the descriptors, and
the retrieval process is evaluated by the accuracy, as shown in Figure 2. The result primarily indicates
that the descriptors can effectively capture the semantic information of the items, as the LLM is able
to retrieve the original item with a high probability. However, the accuracy of the item-retrieval task
is affected by the number of candidates l, and the more candidates there are, the more challenging it
becomes for the LLM to retrieve the original item.

Item-generation Task: Going a step further, we propose an additional item-generation task in which
the LLM is asked to generate both an item and its description based solely on the given descriptors.
To assess the quality of the generated items, we follow the methodology outlined in Section 3.3.1 to
obtain their summary embeddings. Then, we calculate the cosine similarity between the summary
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embeddings of the generated items and those of the original items in the dataset. Ideally, the generated
items should be similar to the truth item (the source of these descriptors). We report the distribution
of cosine similarity between generated items and all the original items (All), and compare it with
that between generated items and their corresponding truth items (Truth) in Figure 3. The whiskers
represent the non-outlier range, with outliers defined as values beyond 1.5×IQR from Q1 or Q3.

The results show that the generated item is significantly more similar to the truth item than to others in
the dataset, indicating that the descriptors can effectively capture the semantic information of the items.
This suggests that LLMs can understand and generate items based on the descriptors, demonstrating
the quality of FACE-generated descriptors and their potential for enhancing the interpretability of
recommendation systems.

4.4.2 Real User Study on Interaction Interpretation

We conduct a real-user evaluation to assess how convincingly descriptor-based interpretations reflect
the implicit relevance of user-item interactions, focusing specifically on the interpretability of
descriptors in explaining user-item interactions, and the key lies in whether the LLM can understand
the implicit relevance of these descriptors. We ask LLM to generate interpretations for user-item
interactions based on the descriptors, and then we ask human annotators and another LLM to rank
the interpretations based on their reliability. This experiment is designed to evaluate the quality of the
generated explanations and to assess how well LLM can understand and explain.

To be specific, we conduct the interaction interpretation experiment, respectively based on RLMRec
profiles (LLM-generated profiles from textual information) and FACE descriptors. We randomly
sample 40 users from the Amazon dataset along with their interacted items. For each user, one
interacted item from the test set is selected as a positive sample, while three non-interacted items are
chosen as negative samples. Next, we provide LLM with the user and item profiles/descriptors and
instruct it to assume an interaction between them, prompting it to generate an explanation grounded
in the implicit relevance of the given information. Finally, we ask ten human annotators and another
LLM (DeepSeek v3) to rank the four candidate explanations for each user based on their reliability,
where higher-ranked explanations are expected to correspond to the positive samples.

Table 2: Ranking Results.
Method Manual LLM

RLMRec Profile 1.935 1.800
FACE Descriptors 1.915 1.700

The results in Table 2 indicate that the relevance between sets
of descriptors can be utilized by LLMs to interpret interactions.
Furthermore, the ranking results show that the explanations gen-
erated based on FACE descriptors are slightly more reliable than
those based on RLMRec profiles, and it is worth noting that a set
of descriptors contains only 16 tokens compared to a paragraph
of profile, suggesting that descriptors can be more efficient in
capturing the implicit relevance of semantic information in user-
item interactions and providing explanations. These interpretability studies quantify the quality of
semantic mapping and suggest that our method improves the interpretability of CF embedding.

4.5 Hyperparameter Analysis

In this part, we carry out a hyperparameter analysis on the Amazon dataset with GMF+FACE and
LightGCN+FACE, concentrating on three crucial hyperparameters: descriptor number n, codebook
dimension d, and the alignment weight λ . The results can be observed in Figure 4.

Codebook Dimension means the degree of semantic preservation for tokens before and after dimen-
sionality reduction. Lower dimensions (64D) limit the semantic capacity of tokens, whereas higher
dimensions (512D) may cause overfitting.

Descriptor Number plays a significant role in reconstruction and alignment, and meanwhile, it means
the number of components after disentanglement. Increasing descriptors from 1 to 16 demonstrates
an overall upward trend in performance, indicating that more components and descriptors preserve
the preference contained in CF embeddings more comprehensively. However, 8 to 16 descriptors
already possess sufficient information. When it is larger, descriptors suffer from duplication.

Alignment Weight controls the injection of textual signals and significantly influences the perfor-
mance. A larger λ injects more text information into the CF model. However, when it is too large,
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Figure 4: Analysis results on hyperparameter sensitivities.

the recommendation task will be hindered. Conversely, when it is relatively low, the performance
drops with a poor alignment result.

4.6 Ablation Studies

We conduct ablation studies on Amazon-book and Yelp datasets with LightGCN as the base model
to validate the necessity of key components in our framework. Four variants are compared: (1)
Full: the complete FACE model; (2) w/o trans: FACE with the transformer module removed from
the autoencoder; (3) w/o recons: FACE excluding the decoder for reconstructing the original input
embeddings; (4) w/o align: FACE without the semantic representation alignment step. The results in
Table 3 show that the full model achieves the best performance on both datasets.

Table 3: Ablation studies.
Dataset Variant Recall@20 NDCG@20

Amazon-book

Full 0.1622 0.1009
w/o trans 0.1611 0.0994

w/o recons 0.1586 0.0981
w/o align 0.1565 0.0962

Yelp

Full 0.1203 0.0766
w/o trans 0.1200 0.0762

w/o recons 0.1191 0.0760
w/o align 0.1171 0.0741

Although the transformer module has a rela-
tively minor overall impact, its complex trans-
formation process can enhance the quality of
the descriptors, as the self-attention mechanism
enables effective communication among disen-
tangled embeddings. Additionally, the absence
of reconstruction negatively impacts the perfor-
mance, and it is noted that in this variant, de-
scriptors suffer from the lack of diversity, result-
ing in the loss of information in the one-way
mapping process. Notably, without alignment,
the metric drops dramatically, demonstrating
that the step of contrastive learning for semantic representation alignment plays a significant role in
enhancing performance by equipping CF models with semantic information.

5 Conclusion

In this paper, we introduced FACE, a novel framework that bridges the gap between collaborative
filtering models and large language models by mapping CF embeddings into the semantic tokens of
LLMs. Through a disentangled projection module and a vector-quantized variational autoencoder,
FACE efficiently converts continuous CF embeddings into discrete, LLM-compatible tokens. A
contrastive alignment objective ensures that these tokens maintain semantic consistency, enhancing
the interpretability and performance of recommendation systems. Our extensive experiments on
three real-world datasets demonstrate that FACE can improve the performance of various CF models.
Additionally, interpretability studies confirm the improved interpretability of the descriptors.
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A More Implementation Details

A.1 Dataset Details

We conduct experiments on three benchmark datasets: Amazon-book, Yelp and Steam: Amazon-
book2, derived from the Amazon Product Review corpus, focuses on literary products, containing
user-book interactions, review texts, and product descriptions; Yelp3, which consists of user-business
interactions from metropolitan services, featuring categorical attributes and consumer feedback; and
Steam4, collected from the digital game distribution platform, containing user-game engagements
with gameplay reviews. Dataset statistics are shown in Table 4.

Table 4: Statistics of the datasets.

Dataset Users # Items # Interactions # Density

Amazon-book 11,000 9,332 120,464 1.2e−3

Yelp 11,091 11,010 166,620 1.4e−3

Steam 23,310 5,237 316,190 2.6e−3

A.2 Hyperparameter Settings

For our FACE framework, the number of descriptors is set to 16, and the dimension of the codebook
is set to 256. The temperature of alignment loss is fixed to 0.02, and the coefficients β, µ and λ are
set to 0.25, 1 and 0.1, respectively. For the parameters of baselines or base models, we mainly use the
official setting from the SSLRec benchmark platform for fair comparisons, except for those we have
stressed in the paper.

B Performance with Other LLMs

We implement our FACE framework using several more representative LLMs, including all-MiniLM-
L6-v2 [41] and gte-Qwen2-7B-instruct [18], to evaluate its generality across different language model
architectures and scales. Table 5, 6, 7 reports the performance of FACE when integrated with these
LLMs on the Amazon-book, Yelp, and Steam datasets. The metric I@N denotes the accuracy of the
item-retrieval task (Section 4.4.1) with N candidates.

Table 5: Performance of FACE with different LLMs on the Amazon-book dataset.

Model R@5 R@20 N@5 N@20 I@10 I@50

LightGCN 0.0659 0.1563 0.0657 0.0961 - -
+ FACE (LLaMA2) 0.0705 0.1622 0.0705 0.1009 0.9116 0.7024
+ FACE (MiniLM) 0.0703 0.1631 0.0698 0.1012 0.9105 0.7394
+ FACE (Qwen2) 0.0692 0.1623 0.0682 0.1006 0.8703 0.6291

Table 6: Performance of FACE with different LLMs on the Yelp dataset.

Model R@5 R@20 N@5 N@20 I@10 I@50

LightGCN 0.0421 0.1141 0.0488 0.0726 - -
+ FACE (LLaMA2) 0.0446 0.1203 0.0519 0.0766 0.8712 0.6469
+ FACE (MiniLM) 0.0445 0.1191 0.0518 0.0762 0.8907 0.6322
+ FACE (Qwen2) 0.0449 0.1193 0.0517 0.0761 0.8356 0.6158

2http://jmcauley.ucsd.edu/data/amazon/
3https://business.yelp.com/data/resources/open-dataset/
4https://www.kaggle.com/datasets/tamber/steam-video-games/data
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Table 7: Performance of FACE with different LLMs on the Steam dataset.

Model R@5 R@20 N@5 N@20 I@10 I@50

LightGCN 0.0530 0.1361 0.0584 0.0862 - -
+ FACE (LLaMA2) 0.0559 0.1439 0.0611 0.0912 0.9330 0.7322
+ FACE (MiniLM) 0.0557 0.1425 0.0608 0.0899 0.9287 0.7079
+ FACE (Qwen2) 0.0558 0.1436 0.0611 0.0908 0.8753 0.6194

The results demonstrate that FACE consistently enhances interpretability while maintaining com-
petitive recommendation accuracy across different underlying LLMs, underscoring the robustness
and flexibility of our framework. Notably, the three LLMs achieve comparable performance when
integrated with FACE, indicating that the choice of LLM (e.g., smaller models like MiniLM or larger
ones like Qwen2) does not substantially affect the framework’s effectiveness. However, Qwen2
exhibits marginally inferior performance, likely attributable to its specialization in query-document
matching rather than semantic similarity. These findings reinforce that FACE is model-agnostic and
can be seamlessly adapted to diverse LLMs, rendering it suitable for a broad spectrum of practical
recommendation scenarios.

Furthermore, this approach reveals the potential to employ small-scale language models for vocabulary
and embedding generation, thereby significantly improving efficiency and reducing computational
resource demands when mapping CF embeddings to semantic tokens. Subsequently, large language
models with superior generative capabilities can be leveraged for downstream tasks—such as explana-
tion generation, large-model-based recommendations, and controllable recommendations—building
upon the descriptors produced by the smaller-model-based FACE.

C Performance Comparing with Other LLM4Rec Methods

To fairly compare the ability of other frameworks to align CF with LLMs for textual information
injection and performance improvement, we adapt CTRL [17] and KAR [47] on the base model
LightGCN, and investigate the effect of further applying FACE to these LLM-enhanced recommenda-
tion models. The experimental results in Table 8 demonstrate that FACE can be effectively applied to
various existing LLM-enhanced recommendation approaches to further improve their performance.
These findings are consistent with those presented in the original paper, highlighting the advantages
of the FACE framework in utilizing semantic mapping to enable LLMs to comprehend collaborative
embeddings.

Table 8: Performance comparison of FACE-enhanced models on three datasets. The best results are
highlighted in bold.

Dataset Metric CTRL CTRL+FACE KAR KAR+FACE

Amazon

R@5 0.0685 0.0699 0.0671 0.0712
R@20 0.1566 0.1612 0.1547 0.1559
N@5 0.0666 0.0706 0.0660 0.0714
N@20 0.0963 0.1013 0.0952 0.1002

Yelp

R@5 0.0413 0.0432 0.0408 0.0446
R@20 0.1161 0.1189 0.1132 0.1249
N@5 0.0471 0.0510 0.0476 0.0518
N@20 0.0719 0.0755 0.0712 0.0781

Steam

R@5 0.0531 0.0569 0.0502 0.0516
R@20 0.1375 0.1461 0.1322 0.1349
N@5 0.0586 0.0620 0.0553 0.0571
N@20 0.0865 0.0922 0.0826 0.0852
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D Case Studies

D.1 Example for Item-Generation Task

To verify the quality of the descriptors mapped by the model, Section 4.4.1 proposes an item-
generation task in which the LLM is asked to generate both an item and its description based solely
on the given descriptors (prompt template in Appendix E). And then we generate its summary to
compare it with the original one. To facilitate a deeper understanding of the process, we present a
case study as illustrated in Figure 5. It can be discovered that the summary of the generated item
closely resembles the original summary (the summary of the corresponding item in the dataset), and
is not similar to the non-corresponding item. This indicates that the descriptors generated by our
FACE framework are effective in capturing the semantic information.

angel, romance, feast, admiring, pain, anguish, dream, hope, novel, 

haggard, growth, emotion, heaving, brooding, solemn, rebirth

Descriptors

{  "title": "Angels in the Storm: A Romance Forged in Anguish",  

"description": "Amid devastating floods and apocalyptic chaos, two 

broken souls find unexpected romance - an angelic healer and a 

brooding survivor must navigate pain and hope as their love 

becomes the only light in a drowned world."}

Generated Item

Readers who enjoy contemporary romance novels with strong emotional 

connections and a touch of humor would enjoy reading Gabriel's Angel. 

It features a damaged hero and a spunky heroine who fall in love despite 

their reluctance to let anyone into their hearts. The book is about healing 

from past wounds, learning to trust, forgiveness, and selflessness, all with 

a backdrop of small-town charm and quirky characters.

Summary of

Corresponding Item

Readers who are drawn to emotional, character-driven stories set 

against the backdrop of catastrophe will be captivated by Angels in 

the Storm: A Romance Forged in Anguish. Fans of post-apocalyptic 

romance—especially those who appreciate stories of healing, 

redemption, and love blooming amid devastation—will find this 

novel particularly moving. Those who seek a tender yet intense love 

story shaped by trauma, survival, and hope will not want to miss 

this hauntingly beautiful tale.

Summary of

Generated Item 

Fans of historical fiction and those interested in the Civil War era would 

enjoy A Dark and Needful River. Set against the backdrop of military 

conflicts and social strife, this novel explores the lives of both 

Confederate loyalists and Union abolitionists, offering a compelling view 

of the resulting changes and subsequent impacts on nearby communities.

Summary of

Non-Corresponding Item

similarity:  0.24

similarity:  0.71

Figure 5: An example for item generation task.

D.2 Example for Interaction Interpretation

In Section 4.4.2, we perform a real user study on interaction interpretation, which guides LLM to
provide an explanation on why the user would like the item. We present a case study in Figure 6
to simply illustrate the process. The descriptors of the user and items (including positive items and
negative items in the test set) are generated by our FACE framework, and the LLM is prompted to act
as an interpretable recommender to provide an explanation for user-item interaction (prompt template
in Appendix E). The generated explanations are then evaluated by real users and LLMs. Ideally, the
explanations provided by LLM for actual interactions (a user and its positive item) should be more
reliable and persuasive, achieving a high ranking.

The results show that the explanations of interactions between users and positive items are more
credible than those between users and negative items. This demonstrates that the relevance between
the descriptors of users and items can be effectively understood by LLMs to generate reasonable
explanations for user-item interactions.

17



nightly, miniseries, uneasy, 

hushed, ambiguous, intriguing...

darkening, gloss, opus, 

nightfall, glint, resultant...

holiday, postponed, cheerful, 

solemn, relieve, haggard...

The reader's fascination with eerie, atmospheric settings 

and unsettling narratives aligns perfectly with the book's 

dark, whispered tones and mysterious, opulent aesthetic, 

creating an immersive experience they would likely enjoy.

This book's blend of cheerful yet solemn moments will appeal to 

your taste for intriguing, ambiguous stories that balance unease 

with quiet depth. It mirrors user's preference for narratives that 

are both hushed and unsettling, much like a gripping miniseries.

:  More Credible :  Less Credible

User: Positive Item: Negative Item: 

Descriptors

LLM Reasoning 

Explanation 

Real User Ranking

Figure 6: An example for interaction interpretation.

E Prompt Template

For summary generation, we use the same prompt template as in the original paper of RLMRec.

For the item-retrieval task, we use the following prompt template to search for the most relevant item
from the list of candidates based on the descriptors:

Prompt for Item Retrieval Task

### Instruction
Given a set of descriptors of an item, find the most relevant item from the list of candidates. The
descriptors are a list of keywords that describe the item. The candidates are a list of items with their
profiles.
Request:
1. Provide the id of the most relevant item from the list of candidates. For example, your reply ’item1’.
2. Do not provide any other information or explanation.
3. Try to find the association between the descriptors and the profiles.
### Input
The descriptors of the item are: <descriptors>. The candidates are: <candidate list>. Please provide
the id of the most relevant item from the list of candidates.

For item generation task, we use the following prompt template to generate a new item based on the
descriptors given by FACE:

Prompt for Item Generation based on Descriptors

### Instruction
Based on the item descriptors, generate a title and description of the item :
1. The provided item is from <dataset name, e.g., Amazon> dataset, where the item is a <dataset item,
e.g., book>.
2. The descriptors are a list of keywords that describe the item.
3. The title is not required to be an actual title, but it should be a title-like phrase.
4. The description should be one or two sentences that introduce the item.
5. Please provide your answer in JSON format, following this structure: { ’title’: ’...’, ’description’: ’...’
}.
Examples:
<examples>.
### Input
The descriptors of the item are: <descriptors>

In real user study, we generate the explanation for the user-item interaction based on the FACE
descriptor sets or RLMRec profiles of the user-item pair. The LLM is prompted to act as a recom-
mender and provide an explanation for the interaction. Specifically, we randomly select 40 users
from Amazon-book dataset. For each user, we randomly select 1 item from their interacted items in
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the test set and 3 randomly selected items. In other words, we have 4 user-item pairs for each user: 1
positive pair and 3 negative pairs. We generate the explanations for these 4 pairs.

Based on FACE descriptors, the prompt template is as follows:

Prompt for Interaction Interpretation based on Descriptors

### Instruction
Task: Act as an explanation generator for recommendation systems. Given a pair of user(reader) and
item(book) descriptor sets, you need to generate a short explanation of why the user would like the item.
Note:
1. Assume that the user will interact with (like) the item, whatever their descriptors are.
2. Provide your evidence to support the assumption based on the descriptors briefly, preferably in one
or two sentences, in English.
3. You may need to focus on the implicit connections between their descriptors’ conceptual space.
4. Based on the descriptors’ conceptual space, you may speculate or assume what exactly the user
preference or the item genres is.
5. Your explanation is based on the descriptors and your speculation.
Request:
1. Don’t mention the name of the item (book title).
2. Don’t try to understand every descriptor, just focus on the most relevant ones or the collective
meaning of the descriptors.
3. Don’t list the descriptors in the explanation, and don’t use the word "descriptors".
4. Don’t make general statements.
5. Just output the explanation in one or two sentences. No additional information is required, such as
reasoning processes, evidence or notes.
### Input
Generate the interaction explanation for the following user and item based on their descriptors.
User descriptors: <user descriptors>.
Item descriptors: <item descriptors>.

Based on RLMRec profiles, the prompt template is as follows:

Prompt for Interaction Interpretation based on RLMRec Profiles

### Instruction
Act as an explanation generator for recommendation systems. Given a pair of user and item profiles,
you need to generate a short explanation of why the user would like the item.
Requirements:
1. Assume that the user will interact with (or like) the item.
2. Provide your evidence to support the assumption based on the profiles briefly, preferably in one or
two sentences.
3. Just explain the reason for the interaction, and don’t make general statements.
4. The given user and item are from Amazon dataset, where the user and item are reader and book
respectively.
5. DON’T mention the item’s name (i.e. the title of the book) in the explanation. Use "book" instead
(without quotes).
### Input

Generate the interaction explanation for the following user and item based on their profiles.
User profile: <user profile>.
Item profile: <item profile>.

After generating the explanation, we ask volunteers as well as LLMs to evaluate the quality of the
explanation. We design a ranking setting where they are asked to rank the explanations for the 4
user-item pairs. The ranking is based on the quality of the explanation, where 1 is the best and 4 is the
worst. For LLM ranking, we prompt the LLM to act as a recommender and provide a ranking for the
explanations. The prompt template is as follows (same for explanations based on FACE descriptors
and RLMRec profiles):
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Prompt for LLM Ranking on Explanations

### Instruction
Data Description:
For each user corresponding to 4 items, only 1 item is a positive sample that interacts with the user,
while the others are negative samples.
The explanation assumes that the user and the item will interact, and is generated by an LLM based on
the descriptors or profiles of the user and item.
Focus on the credibility of the explanation to make judgments.
Task Requirement:
Rank the credibility of the interaction explanations for the 4 items of a user, with ranks from 1 to 4. The
higher the rank, the more credible the explanation, and the more likely the user-item pair is a positive
sample.
Output Format:
Output the four ranking numbers separated by spaces, without any other content, e.g., 1 2 3 4
### Input
For user u:
Item 1 Explanation: <item1 explanation>
Item 2 Explanation: <item2 explanation>
Item 3 Explanation: <item3 explanation>
Item 4 Explanation: <item4 explanation>
Please rank the explanations from 1 to 4 based on their credibility.

F Cold-start Experiments

Our framework provides an effective cold-start solution for collaborative filtering models. In FACE,
when using an AutoEncoder for disentangled mapping, our model simultaneously trains a decoder that
generates original collaborative representations from descriptors. We can leverage textual information
from the dataset to generate descriptors for cold-start items. These descriptors can then be fed into
the well-trained decoder to generate collaborative representations for cold-start items. The same
principle applies to cold-start users.

We conducted an item zero-shot experiment to illustrate the model’s cold-start performance: For
a given dataset, 1/5 of the items were designated as cold-start items and excluded during training.
During testing, we utilized the textual summary information to allow the LLM to generate descrip-
tors, mimicking the association between textual information and descriptors of other items. The
embeddings of these generated descriptors were then fed into the decoder to produce collaborative
representations. Item recommendations were then made by calculating the similarity with user repre-
sentations. We compared our approach against AlphaRec, a model with strong cold-start performance,
using the same base model and textual information. The results are presented below:

Table 9: Cold-start performance comparison.

Dataset Metric AlphaRec FACE

Amazon-book

R@5 0.0505 0.0630
R@20 0.1370 0.1395
N@5 0.0456 0.0611
N@20 0.0750 0.0912

Yelp

R@5 0.0347 0.0342
R@20 0.1116 0.1010
N@5 0.0368 0.0374
N@20 0.0621 0.0658

Steam

R@5 0.0447 0.0496
R@20 0.1287 0.1358
N@5 0.0430 0.0562
N@20 0.0729 0.0838
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G Complexity Analysis

Let B = |Ω| denote the batch size, n the number of disentangled descriptors, c = |D| the size of the
codebook for quantization, and d the embedding dimension. The disentanglement module, involving
a disentangled mapping and a Transformer encoder, has a time complexity of O(B(n2d+ d

2
n)); The

quantization module requires a nearest-neighbor search over the codebook, with a time complexity of
O(Bcnd); The Alignment stage, using a Transformer-based language model and contrastive loss, has
a time complexity of O(B(n2d+ d

2
n) +B2d). Considering that the batch size B is much smaller

than the total number of users and items N = |U| + |I|, the additional computational cost of the
FACE framework is linear with respect to N .

H Limitations

Due to the computational resource constraints during experimentation, the current system adopts
relatively small-scale language models (e.g., Llama2-7B, MiniLM-L6, Qwen2-7B); the framework’s
performance when integrated with larger-scale language models remains unverified. While the
effectiveness of the smaller embedding model has been empirically validated in various studies,
we hypothesize that adopting models with expanded parameter sizes could further enhance text
embedding quality and vocabulary representation capabilities. In future work, we intend to extend our
methodology to larger open-source LLMs (e.g., LLaMA-3 series or 70B-scale architectures) to fully
evaluate the potential of sentence embedding and semantic alignment. Besides, our framework is
currently limited to the collaborative filtering domain, and its applicability to other recommendation
scenarios (e.g., sequence recommendation) remains unexplored. We plan to investigate the extension
of our framework to these domains in future research.

I Broader Impacts

Our proposed framework, FACE, aims to enhance the performance and interpretability of collaborative
filtering recommendation systems via mapping CF embeddings into LLM tokens. It is a model-
agnostic framework that can be applied to various CF models and LLMs, making it versa tile and
adaptable to different recommendation scenarios. The interpretability aspect of FACE can help users
understand the reasoning behind recommendations, potentially increasing user trust and satisfaction.
Beyond improving recommendation accuracy and interpretability, convert CF embeddings into LLM
tokens can also facilitate more downstream tasks. For instance, the generated descriptors can be fed
into LLMs to carry out recommendation tasks, especially for cold-start scenarios, and descriptors can
be modified specifically to achieve controllable recommendations.

However, despite the advancements offered by FACE, it is essential to acknowledge the potential
drawbacks. The reliance on LLMs may introduce biases present in the original training data, which
could lead to skewed recommendations as well as the bias in the generated explanations. Additionally,
the computational resources required for LLMs may limit the accessibility of this approach for
smaller organizations or researchers with limited resources.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly summarize our contributions and scope.
We focus on LLM4RS, and propose a novel general framework for mapping CF embeddings
into LLM tokens.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations of the work in Appendix. By explicitly acknowledg-
ing these limitations, we provide a balanced view of our work and suggest directions for
future research to address these challenges.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: We propose a method of mapping CF embeddings into LLM tokens and the
paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We fully disclose all the information needed in Section 4.2 and Appendix,
including the implementation details of evaluation, datasets, experiment settings, hyperpa-
rameters and prompts.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide open access to the data and code in our Anonymous Github
repository (the link is in Abstract).
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We specify all the training and test details in Section 4.2 and Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Experiments in this paper are conducted in multiple iterations, yielding stable
results. We reported the average of these results for consistency and reliability.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The information of compute resources is provided in Section 4.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research conform with NearIPS Code of Ethics in every aspect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss both potential positive societal impacts and negative societal
impacts of our works in Appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our experiments utilize publicly available recommendation datasets widely
adopted within the research community, alongside established open-source LLM that inher-
ently adhere to open-science principles. Given the non-sensitive nature of these datasets and
the transparency of the underlying methods, we assess the risk of misuse to be negligible.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We maintain strict compliance with these standards by ensuring all assets
employed in our work—such as codes, datasets, and pre-trained models—receive appropriate
attribution through citations to their original creators.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We offer our code in an Anonymous Github repository (the link is in Abstract).

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our research contains neither crowdsourcing experiments nor research with
human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our research contains neither crowdsourcing experiments nor research with
human subjects.

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We use the LLM as embedding model to encode sentences as described in
Section 3.3.1.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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